Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 98: 16-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27343372

RESUMO

Guarana (Paullinia cupana var. sorbilis) is a plant from the Amazonas region with socio-economic importance. However, guarana production has been increasingly affected by unfavorable conditions resulting from anthracnose, caused by the Colletotrichum fungal genus, which primarily affects mainly the Amazonas region. The aim of the present study was to isolate bacterial endophytes from the seeds of guarana plants obtained from Amazonas region and the Northeast state of Bahia, a region where this disease is not a problem for guarana plantations. The number of bacterial Colony Forming Units (CFU/g seeds) was 2.4 × 10(4) from the Bahia and 2.9 × 10(4) from the Amazonas region. One hundred and two isolated bacteria were evaluated in vitro against the phytopathogenic strain Colletotrichum gloeosporioides L1. These isolates were also analyzed for the enzymatic production of amylase, cellulase, protease, pectinase, lipase and esterase. Approximately 15% of isolates, showing high antagonistic activity, and the production of at least one enzyme were identified through the partial sequencing of 16S rDNA. The genus Bacillus was the most frequently observed, followed by Paenibacillus, Ochrobactrum, Microbacterium and Stenotrophomonas. Proteolytic activity was observed in 24 isolates followed by amylolytic, pectinolytic and cellulolytic activities. No esterase and lipase production was detected. Most of the isolates, showing antagonistic effects against C. gloeosporioides and high enzymatic activities, were isolated from the anthracnose-affected region. A biocontrol method using the endophytes from guarana seeds could be applied in the future, as these bacteria are vertically transferred to guarana seedlings.


Assuntos
Antibiose , Bactérias/classificação , Bactérias/isolamento & purificação , Colletotrichum/crescimento & desenvolvimento , Endófitos/classificação , Endófitos/isolamento & purificação , Paullinia/microbiologia , Bactérias/genética , Carga Bacteriana , Biodiversidade , Brasil , Análise por Conglomerados , Contagem de Colônia Microbiana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/genética , Endófitos/fisiologia , Enzimas/análise , Controle Biológico de Vetores/métodos , Filogenia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Sementes/microbiologia , Análise de Sequência de DNA
2.
Springerplus ; 4: 258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090305

RESUMO

Endophytes colonize an ecological niche similar to that of phytopathogens, which make them candidate for disease suppression. Anthracnose is a disease caused by Colletotrichum spp., a phytopathogen that can infect guarana (Paullinia cupana), an important commercial crop in the Brazilian Amazon. We investigated the diversity of endophytic bacteria inhabiting the phyllosphere of asymptomatic and symptomatic anthracnose guarana plants. The PCR-denaturation gradient gel electrophoresis (PCR-DGGE) fingerprints revealed differences in the structure of the evaluated communities. Detailed analysis of endophytic bacteria composition using culture-dependent and 16S rRNA clone libraries revealed the presence of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria phyla. Firmicutes comprised the majority of isolates in asymptomatic plants (2.40E(-4)). However, cloning and sequencing of 16S rRNA revealed differences at the genus level for Neisseria (1.4E(-4)), Haemophilus (2.1E(-3)) and Arsenophonus (3.6E(-5)) in asymptomatic plants, Aquicella (3.5E(-3)) in symptomatic anthracnose plants, and Pseudomonas (1.1E(-3)), which was mainly identified in asymptomatic plants. In cross-comparisons of the endophytic bacterial communities as a whole, symptomatic anthracnose plants contained higher diversity, as reflected in the Shannon-Weaver and Simpson indices estimation (P < 0.05). Similarly, comparisons using LIBSHUFF and heatmap analysis for the relative abundance of operational taxonomic units (OTUs) showed differences between endophytic bacterial communities. These data are in agreement with the NMSD and ANOSIM analysis of DGGE profiles. Our results suggest that anthracnose can restructure endophytic bacterial communities by selecting certain strains in the phyllosphere of P. cupana. The understanding of these interactions is important for the development of strategies of biocontrol for Colletotrichum.

3.
Braz. j. microbiol ; 44(4): 1331-1339, Oct.-Dec. 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-705276

RESUMO

Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.


Assuntos
Acil-Butirolactonas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Parasita , Methylobacterium/fisiologia , Extratos Vegetais/metabolismo , Plantas/microbiologia , Methylobacterium/crescimento & desenvolvimento
4.
Braz J Microbiol ; 44(4): 1331-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24688531

RESUMO

Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.


Assuntos
Acil-Butirolactonas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Parasita , Methylobacterium/fisiologia , Extratos Vegetais/metabolismo , Plantas/microbiologia , Methylobacterium/crescimento & desenvolvimento
5.
World J Microbiol Biotechnol ; 28(4): 1475-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22805929

RESUMO

Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.


Assuntos
Catharanthus/microbiologia , Celulase/biossíntese , Endófitos/enzimologia , Methylobacterium extorquens/enzimologia , Plântula/microbiologia , Xylella/crescimento & desenvolvimento , Antibiose , Celulase/genética , Endófitos/genética , Engenharia Metabólica , Methylobacterium extorquens/genética , Microscopia Eletrônica de Varredura , Doenças das Plantas/prevenção & controle , Xilema/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...